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Abstract. We study the growth process of ferroelectric materials by kinetic Monte
Carlo simulations. An ionic model with long-range Coulomb interactions is used to
model the relaxor single crystals. The growth is characterized by thermodynamic
processes involving adsorption and evaporation, with solid-on-solid restrictions. An
algorithm is developed in order to simulate growth under such a model, for which
existing formalism of the kinetic Monte Carlo algorithm is inadequate. We study the
growth rates and the order structure of the grown crystals as a function of temperature,
chemical composition, and growth orientation. Tests of our algorithm on NaCl gave
good results. Preliminary results on growth in Ba-based heterovalent binaries showed
1:2 ordering along the [111] direction over limited scales.

I INTRODUCTION

The discovery of ultra-large coupling piezoelectrics [1] has intensified the theoreti-
cal interest in these remarkable materials. In addition to understanding equilibrium
properties, where calculations by density-functional theory methods coupled with
effective Hamiltonians have shown great promise [2], understanding how to grow
large single crystals is clearly of key importance. In this paper, we explore theoret-
ical approaches to study the crystal growth process of ferroelectric materials.

We use a “second-principles” procedure which simulates the growth process with
kinetic Monte Carlo based on a simple model Hamiltonian. The model was pro-
posed by Bellaiche and Vanderbilt [3] in 1998 for the perovskite alloys. It reduces
the system to only the B-sites and assumes that the long-range Coulomb interac-
tions between ions at these lattice sites are the driving mechanism for ordering.
This simple electrostatic model successfully reproduced most of the B-site compo-
sitional long-range orders in equilibrium Monte Carlo simulations.
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Using this electrostatic model for the perovskite alloys, we study the crystal
growth process by kinetic Monte Carlo (KMC) simulations [4]. KMC methods
have seen various applications to study growth and kinetic processes in Ising-like
lattice models. In particular, a sampling algorithm introduced by Bortz, Kalos,
and Lebowitz (BKL) [5] works efficiently for the short-range interactions present
in these systems. For the electrostatic model here, however, an enhanced sampling
algorithm, which we develop below, is needed in order to treat long-range Coulomb
interactions efficiently.

In this paper, we describe our theoretical and computational approach for growth
simulations of ferroelectric crystals, and present preliminary results. The rest of
the paper is organized as follows. In Section II, we discuss the electrostatic model,
standard KMC, our new sampling algorithm to implement KMC for this model,
and additional technical issues to treat the long-range Coulomb interactions in a
growth simulation with a finite-sized simulation cell. In Section III, we show results
on the growth processes of rock-salt type crystals. We conclude in Section IV with
some remarks on future directions.

II APPROACH

A The model

The electrostatic model of Bellaiche and Vanderbilt [3] is a simple but remarkably
successful ionic model of perovskite alloys. In this model, the electrostatic energy
due to point-charge ions in the ideal cubic structure is assumed to be the dominant
factor for the observed B-site ordering. For an A(BB’)O3 compound, the total
electrostatic energy can be written as
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where R, is the position of the ion on site 7 (7 ={A,B,01,02,03}) of cell [ and € is
the dielectric constant. Because charges at the A-sites and O-sites have fixed values,
it can be shown that, up to a constant, the configurationally averaged electrostatic
energy depends only on the B-site charges
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where a is the cubic lattice constant, R;p = la, and ¢, = Q;5 — 4e for compounds
whose A-sites are occupied by Pb or Ba.

Different classes of alloys can be conveniently described using this electrostatic
model for the B-sites. For example, IV,IV|__ denotes a homovalent binary alloy
having tetravalent B-atoms, e.g., Pb(ZrTi)O3, while IT;_z)/31V;Vy(1—_s)/3 indicates
a heterovalent ternary such as (1 — z)Ba(MgNb)O3 + zBaZrOs.



The model of Eq. (2) leads to the following Hamiltonian for our system,
H(C) = Ep(C) + AuN, (3)

where N is the total number of occupied sites, i.e., the total number of ions in the
grown crystal. The second part of the Hamiltonian accounts for the chemical po-
tential difference between the crystal and the melt. The magnitude of Ay controls
the “sticking” rate from the melt.

B Kinetic Monte Carlo (KMC) method

The kinetic Monte Carlo (KMC) method is one of several simulation techniques
used to simulate the relaxation processes of systems away from equilibrium (e.g.
growth processes). It has been applied successfully to crystal growth and sur-
face/interface phenomena [4,6], mostly in the context of kinetic Ising models. Our
growth simulation uses the general approach of KMC, although significant enhance-
ment to the algorithm must be introduced to make it practical for the long-range
electrostatic interactions.

The objective of the growth simulation is to create a model that describes the
dynamics of crystal growth as stochastic processes such as adsorption, evaporation,
and surface migration. Our simulations presently include the first two only, namely
the adsorption and evaporation of the adatoms. The adatoms represent the B-site
ions in the single crystal perovskite alloy, characterized entirely by their charge and
interacting with each other through the potentials that we discuss in Section II.D.
The structure of the simulation is a three-dimensional lattice where adatoms can
individually and singularly occupy lattice sites.

We carry out our growth simulations in an L X L X oo cell on an ideal cubic
lattice. Periodic boundary conditions (PBC) are imposed in the z-y plane. The z-
direction is free and is the growth direction. We start our growth simulations with
an L x L x Hy substrate which serves as the growth seed. The crystal configuration
C at any time is specified by the sites which are occupied and the charge ¢; at each
occupied site | = (i, 7, k).

In our simulations, we impose a solid-on-solid (SOS) restriction, which does not
permit the appearances of vacancies. The SOS restriction means that we can write
H as

H(C) = En(C) + ApY hy, ()
(4:.4)

where h;; is the height of the present crystal configuration at position (4, j).

We now outline the basic theoretical background for the kinetic Monte Carlo
method. The goal is to simulate the time evolution of the system through a Markov
chain of configurations. We define P(C,t) as a time-dependent distribution of con-
figurations, C as the current crystal configuration, and C' as a crystal configuration



related to C' by one time step. The transition rate from C to C' is denoted by
w(C — C"). The transition rate is to be chosen to simulate the physical system as
realistically as possible.
We can then write down the following master equation
OP(C,t)

== 2 w(C— CVP(C.1) + 3 w(C' = C)P(C",1), (5)

where the first term on the right describes the loss because of transitions away from
C, while the second term describes the gain because of transitions into C'. In the
equilibrium limit (as ¢t — 00), the Boltzmann distribution

P.,= Z 'exp I_Z;C)] (6)

is reached. We require that detailed balance be satisfied:
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The KMC technique can be viewed as a method of solving equation (5). We
adopt the following choice of transition rates w(C — C")

wa = exp (Ap/kT) (8)
we = exp (—AFEg(C)/kT), 9)

where w, and w, are the rates for adsorption and evaporation, respectively, of an
adatom. In this choice, the adsorption rate is a constant, while the evaporation
rate depends on the change in total potential energy in the crystal when an adatom
evaporates from the surface: AEg(C) = Eg(C") — Ep(C).

For kinetic Ising models, the algorithm of BKL [5] allows an efficient stochas-
tic realization of the kinetic process under the choice in Eq. (9). In this al-
gorithm, a site (4,7) is selected randomly in each step. An event is then se-
lected at (i,7) by Monte Carlo sampling [7] from the list of all three possible
events, {adsorption, evaporation, nothing}. For Ising-like models, where the
interaction is limited to near-neighbors, the energy difference AEg(C) is com-
pletely determined by the local environment at site (4, j). The relative probabilities
{P,,P,,P, =1— P, — P.} can thus be easily obtained from the global maximum
of we, i.e., the minimum possible AEg(C) for any C.

C KMC algorithm for long-range interactions

The electrostatic model of Eq. (2) means that the energy change needed in
Eq. (9) depends on the entire configuration C. It is therefore difficult to deter-
mine the global minimum, AFE,;, = min[AEg(C)]. Furthermore, even if AE;,



could be identified, the energy change AEg(C) for most configurations would be
much greater than AFE,;,, which would cause P, to approach unity, thereby driv-
ing evaporation and adsorption probabilities to zero and rendering the algorithm
ineffective.

Our new algorithm goes a step beyond the standard KMC algorithm. [5] It con-
siders all N = L x L surface sites simultaneously and creates an event list which
includes every possible event for every possible surface site. The algorithm proceeds
as below:

(i) Generate a list, E, of all possible events per time step. There are 2N possible
events: an evaporation or an adsorption could happen on each of the N = L x L
surface sites.

(ii) Calculate the rates (w) of adsorption and evaporation for each site on the surface

2N
(2N rates). Denote the total rates by W, W = 3= w;.
2

(iii) Normalize these 2NV rates by W, giving probabilities, P;, for adsorption and evap-
oration on sites 1,2,---, V.

(iv) Generate a random number r € [0,1) and choose the first event E; such that
i
> P, > r. An event will always be chosen.
k=1
(v) Generate the new configuration C' based on chosen event E;.

(vi) Assign a “real time” increment At = —1/W In(r') to this MC step, where 7/
is another random number on [0, 1).

The added complexity comes from the need to store and update an array of
surface potentials, the calculation of an event list from these surface potentials,
and finding the potential event in this list. The benefit comes in that an event is
guaranteed to take place with each iteration of the algorithm and that the need for
AEn;, is negated completely. Evaporation/adsorption rates for all possible sites
are normalized; The sum of the probabilities that an adsorption or evaporation
occurs at any site is unity.

We end the discussion of the algorithm with a comment on step (vi). The issue
of time in a KMC simulation is a subtle one. Often the Monte Carlo (MC) time
tuc is used as a measure of the real time. This is approximate. We follow the
same principle, but an adjustment is necessary because of our particular sampling
algorithm. In our simulation, an event is forced to happen in each step regardless
of the total rates W for the configuration at hand. We therefore rescale Aty in
each step to reflect the total normalization factor W.

D The Coulomb interaction in a growth simulation

In addition to requiring a modified KMC sampling algorithm, the long-range
Coulomb interactions themselves also require special treatment in a simulation



with a finite-sized simulation cell. In order to calculate the evaporation rate for a
surface charge at o = (4, j, k), we need to compute pair-wise interactions between
this charge and every other charge in the present crystal configuration. Indeed, for
each charge at [ # o inside the cell, the interactions between o and all the images of
[ from periodic boundary condition (PBC) also need to be included. A neutralizing
background is then added to ensure that the total pair-wise interaction between o
and [ is finite. That is

Qo 9o Qo
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where I’ denotes the image positions of I due to PBC, and o’ denotes those of o.

In an equilibrium simulations, PBC is implemented for the simulation cell in all
directions. The formula indicated in Eq. (10) is the so-called Ewald method and
evaluation of V,_; is straightforward [8,9]. In our growth simulation, however, PBC
is only in the x-y plane, while the z-direction is the direction of growth and is free.
The sums in Eq. (10) are therefore restricted to two-dimensions. The sites o and
[ are in general not in the same z-y plane. We place all the images in the z-y
plane of [. For I’ this is natural. For o' we project o to the z-y plane of [ along
the growth direction, and then take the images of the projected position. In other
words, the charges are in 3-D but the Ewald sum is limited to 2-D. A procedure for
this “fractional-dimension” situation was developed to evaluate v,_;. The energy
change in Eq. (9) for evaporation of the charge at o is thus given by

AEp = -2 qu,, (11)
€ea I

where the sum is over all sites [ in the crystal inside the simulation cell. We use a
look-up table for v, ; in our simulation to improve computational efficiency.

IIT RESULTS

Our results here will focus on the rock-salt structure, i.e., that of sodium chloride
(NaCl). This structure is composed of alternating layers of Na'* and CI'~ in both
the [111] and [111] directions. It typifies the crystal ordering of a wide variety
of materials. Heterovalent binaries such as described by II;/5VIi/s (gg = £2) or
111, 5V1/2 (¢ = %1) are good perovskite examples of rock salt type ordering. The
rock-salt structure also represents the simplest crystal our ionic model can grow.
It can also be modeled with Ising-like short-range interaction, for which various
results are available for comparison and benchmark.

Our crystal growth simulation is a model of two parameters. The variation of
the temperature of the system, T, and the chemical potential difference, Ay, will
control the changing characteristics of the growing crystal. We choose ¢ = +1,
i.e., the II; o VI; /5 compound. Clearly, a trivial energy scale factor will allow us to
convert the system to IIl;/2Vy/2 compounds.



We define the growth rate of the crystal as the number of adatoms adsorbed
divided by the total real MC time. The growth rates from the simulation, over a
range of temperatures, are given in Figure 1 as a function of the chemical potential
difference Ap. If we let @ ~ 8a.u. and € ~ 10, our temperature scale is about 1000K,
i.e., kT' = 1 in the simulation corresponds to 1000K. We use an L = 20 crystal
matrix. Each simulation ran for 100 MC steps or 100 crystal layers (including
incomplete layers), whichever came first. (An MC step is defined as L? attempts
at the procedure outlines in Section II.C.) The selected temperatures range from
kT = 0.025 to kT = 2.0. Every data point represents the average growth rate
value of ten separate crystal simulation runs. The error bars, which are the normal
statistical error (0/4/n) in MC calculations, are smaller than symbol size in most
cases.
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FIGURE 1. Growth rates for rock salt.

The qualitative features of these growth rate curves are consistent with the model
and the expected behavior of crystal growth. As Ap increases, an adatom is more
likely to adsorb to the crystal surface. As k7T decreases, the adsorption rate will
increase but more importantly, the “selectiveness” of evaporation will increase. A
lower kT will in effect increase the energy differences between competing config-
urations. The direct result, as growth is concerned, will be that adatoms will
increasingly have more neighbors instead of less (layer-by-layer growth vs. rough)
and charge similar adatoms will seem even more repulsive. For very high Ap,
adatoms will stick anywhere, no matter the location or ionic adversity, and the
growth rate will be high. Alternatively, if the temperature becomes too high, the
crystal will melt, the preferred phase becomes the liquid phase and result in the



negative growth.

FIGURE 2. Long-Range Simulation for Rock Salt: layer-by-layer growth (k7 = 0.1
and Ay = —0.75). Grey and white cubes represent the two different species. Initial
substrate (seed) is indicated.

An interesting phenomena is the presence of “towers” when very rough growth
occurs. At very high adsorption rates, crystal formations nucleate on the surface
independent of one another and likely with several defects. As these initial for-
mations grow, they will eventually meet and will not necessarily match up. That
is, the alternation of charges will not fit the rock salt description. Since the crys-
tal is growing so fast, there is not time to “correct for” these imperfections with
evaporations and the most energy efficient alternative is the creation of individual
towers of the correct crystal order. Since surface diffusion is not yet included in
our simulation, it remains to be seen how robust these towers are in more realistic
situations.

Simulations on heterovalent binaries of the form II; 3Vy/3 are presently underway.
The ground state crystal ordering of Ba-based materials is predicted (and confirmed
by equilibrium MC [3]) to be [111];.2. In our model, ¢ = —2 and ¢ = +1, where
the subscript on ¢ is the species identifier of this two species system. In adsorption,
the quantity of species one is therefore 1/3 and that of species 2 is 2/3, maintaining
the charge neutrality of the B sublattice. Preliminary growth simulations in the
[001] direction have shown 1:2 ordering along [111] over limited scales. We believe
ordering over extended scales will be achieved as we move to direct simulations of
growth along the [111] direction.

IV . SUMMARY AND DISCUSSIONS

In conclusion, we have presented an approach for growth simulations of ferro-
electric materials. We use an ionic, long-range model and an enhanced kinetic



FIGURE 3. Long-Range Simulation for Rock Salt: rough growth with towers
(kT = 0.1 and Ap = —0.65).

Monte Carlo formalism. Test results from our simulations on rock salt exhibit the
expected growth and ordering behavior and are encouraging.

Clearly much progress would have to be made in theoretical and computational
capabilities of growth simulations in order for them to contribute in a significant
way to the understanding and control of the growth process of relaxor ferroelectric
crystals, which has largely remained an experimental issue. Our goal here is a
second-principles procedure to study growth processes which can be systematically
enhanced. The two components of our approach are a model Hamiltonian and
kinetic Monte Carlo. Either can be improved or even replaced eventually. For
example, the electrostatic model could be modified to include charge transfer [10].
Within the framework of KMC, the effect of surface migration/diffusion could be
incorporated. The impact of the solid-on-solid restriction should be explored. We
are also studying growth along directions other than [100] in our simulations of
heterovalent binaries.
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